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Numerical studies of the generalized spin-one-half
Falicov-Kimball model in one and two dimensions
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Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 041 01 Kozice, Slovakia

The extrapolation of small-cluster exact-diagonalization calculations and the Monte-Carlo method is used to study the spin-
one-half Falicov-Kimball model extended by the spin-dependent Coulomb interaction (J) between the localized f and
itinerant d electrons as well as the on-site Coulomb interaction (Uff) between the localized f electrons. It is shown that in the
symmetric case, when the chemical potential y equals to U (where U is the spin-independent on-site Coulomb interaction
between the f and d electrons) the ground-state phase diagram of the model has an extremely simple structure that consists
of only two phases, and namely, the charge-density-wave phase (with local f-electron pairs on one of two sublattices of a
bipartite lattice) and the spin-densitywave phase. The nonzero temperature studies of the speci_c heat showed that these
phases persist also at _nite temperatures. The critical temperature Tc for a transition from the low-temperature ordered

phases to the high-temperature disordered one is calculated numerically for various values of J and Uff .
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1. Introduction

Since its introduction in 1969 [1], the Falicov-Kimball
model (FKM) has become an important model for a
description of correlated fermions on lattices. The model
was originally proposed to describe the metal-insulator
transitions in the rare-earth and transition-metal
compounds. Later it has been used in literature to study a
great variety of many-body effects such as alloy
formation, mixed valence and electronic ferroelectricity
[2]. Recent theoretical studies of the FKM showed [3] that
the model can yield the correct physics for description of
the ground-states of rare-earth and transition metal-
compounds, what has motivated also the study of
thermodynamic properties of this model [4].

In its original version the FKM consists of particles
localized on f orbitals which interact with a dispersive
band of d orbitals through an on-site Coulomb interaction
but various generalized versions of the FKM are being
studied too. It was shown that including of different
interaction terms to the FKM can lead to dramatic changes
of the ground state and thermodynamic properties of the
model [4-8]. Generalized versions of the FKM can
describe a wide range of physical properties of the
strongly correlated systems, that were not possible to
explain by the original FKM.

In this paper we focus our attention on the spin one-
half models with spin-dependent local interaction between
localized f electrons and itinerant d electrons and models
with local repulsive Coulomb interaction of finite
magnitude between f electrons. Till now only a few
analytical and numerical results have been obtained
concerning the influence of these terms on ground-state as
well as thermodynamic properties of the FKM [6-8].

For example the models with spin-dependent local
interaction can describe the ferromagnetic ground state
and various stable inhomogeneous charge and spin
orderings observed in real materials [6,7]. It was shown
analytically that in models with finite inter-orbital
Coulomb interaction can arise an effective on-site
attraction between the localized particles that can
overcome a direct repulsion in the strong coupling limit
[8]. This attraction leads to a chessboard-like pattern of
localized f-pairs that can persist up to finite temperatures
[8].

The essential influence of mentioned interactions on
properties of the FKM and their ability to describe new
famous phases was the main motivation for us to study the
ground state and thermodynamic properties of generalized
model that include both the spin dependent interaction and
finite local repulsion of localized particles.

The Hamiltonian of the model is

H= th d V) Zn nd +Ef2n +

ic
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where n; cfflc |G( i IG IG) is the f-electron (d-

+ .
electron) occupation number and f; f. are the creation
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and annihilation operators for an electron of spin o=T,{ in

. + .
the local state at lattice site i and dic’dic are the creation
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and annihilation operators of the itinerant electrons in the
d-band Wannier state at site i.

The first term of the model (1) is the kinetic energy
corresponding to the quantum-mechanical hopping of the
itinerant d electrons between sites i and j. These inter-site
hopping transitions are described by the matrix elements
tij’ which are —t if i and j are the nearest neighbors and

zero otherwise (In the next all energies are measured in
units of t). The second term represents the on-site
Coulomb interaction between the d-band electrons and
localized f electrons. The third term stands for the
localized f electrons whose sharp energy level is Ef. The

fourth term is the above mentioned anisotropic, spin-
depended local interaction of the Ising type between the
localized and itinerant electrons that reflects the Hund’s
rule force. The last term is an on-site Coulomb interaction
between f-electrons with opposite spins. Thus from the
major interaction terms [] that come into account for the
interacting d and f electron subsystems only the Hubbard
type interaction has been omitted. However, as we have
shown in our previous paper the influence of this term can
be neglected at least for intermediate and strong
interactions U [7].

Since in this generalized version of the FKM the f-

. f o
electron occupation number Nio of each site i commutes

with the Hamiltonian (1), it is a good quantum number,
taking only two values: Wi =1 or 0, according to whether

or not the site i is occupled by the localized f electron with
spin ¢. Thus the Hamiltonian (1) can be rewritten as

H= Zhljcs ic jc+Ufsz|TW ¢+Ef2w @
ic

where hijc(w):tij+(U(Wi_6+wi0)+J(Wi_G—WiG)Sij). Thus
for a given f-electron configuration w, the Hamiltonian (1)
is the second-quantized version of the single-particle
Hamiltonian h, so the investigation of the model (1) is
reduced to the investigation of the spectrum of h for
different configurations of f electrons.

For further purposes it is suggestive to look at used lattices
as consisting of two interpenetrating sublattices A and B
and to define the sublattice magnetization

2
Mae) :I Z (Wi» —Wr)a 3)

ilA,(B)

(where L is the number of lattice sites) and the sublattice f-
electron occupancy

2
Naey = D, (W, +w-), 4)

ilA,(B)

In the next study we concern our attention on the
symmetric case of the model, where H-uN (N- is the total
number of f and d electrons) remains unchanged under

particle-hole transformation. This condition holds for all J
if p=U and Uff:—ZEf.

2. Ground state properties

As will be discussed latter the condition p=U is
satisfied for all temperatures just when the average number
of all electrons in the system is equal to 2L. For this reason
we have restricted our study of the ground state properties
of the model (1) on the case N=2L. The ground state was
studied in one and two dimensions in the weak,
intermediate and strong-coupling limit of Coulomb
interaction U (U=0.5,1,2,4,8) and for wide range of J and

1
Uff values (0<J<2U, 0<Uff 4U Ef ff)
The total number of possible f—electron configurations

for the model (1) is 4L, thus only the clusters with L<12
have been accessible for the exact diagonalization studies.
For L>12 we have used a well-controlled numerical
method elaborated recently by one of the present authors
[10].

Using these two methods we have found that for
scheduled conditions and above mentioned values of
parameters only two kinds of f-electron configurations can
be the ground state of the model (1). The first is the
charge-density-wave (CDW) phase, where one of the
sublattices is fully occupied by f electrons (two f electrons
per site) and the other is empty.
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Fig. 1. Phase diagrams of the model (1) in the J/U-UﬁjU

plane for different values of U in one (1D) and two (2D)

dimensions. Different line types represents the boundary

between the CDW and SDW phases for different cluster
sizes.
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The second is the spin-density-wave (SDW) phase,
where all sites are occupied by one electron and for J>0
one of the sublattices is occupied by electrons with spin up
and another by electrons with spin down. This means that
for the CDW phase we have m A:mBZO,

Naey =0,Ngay =2 and for the SDW phase

My =L Mg =1, vp=vg=1l. The CDW phase
which is the ground state bellow the critical values of U]cr

and J is an example of local f-electron pairing that results
from an effective on-site attraction between the localized
electrons, produced by quantum mechanical effects which
can overcome a direct Coulomb repulsion.

The fact that the ground-state of the model consists of
only two phases was used to construct a phase diagrams in
the J—Uﬁ plane for various U and lattices of several

hundreds sites. These phase diagrams are shown in Fig.1,
where the 1D represents the one dimensional case and 2D
the two dimensional case. One can see that increasing U
shifts the region of stability of the CDW phase to higher
values of Uf/U. Contrary to U the parameter J suppresses

the CDW phase. The most interesting result is that the
CDW phase can be the ground state of the model (1) even
for Uff>U that represents the realistic situation of strongly

correlated electrons
Hamiltonian (1).

The possibility of metal-insulator transition was
studied too. The energy gap on the Fermi level is for the
CDW phase equal to 2U and for the SDW phase 2J. So
there is a discontinuous metal-insulator transition (on Uff)

systems described by model

for J=0 and a discontinuous insulator-insulator transition
for J>0.

3. Thermodynamics

The question if or not the CDW and SDW phases
persist up to finite temperatures motivated our study of
thermodynamic properties of the model (1). The grand
canonical partition function of Hamiltonian (1) can be
written directly as a function of eigenvalues sic (of the

operator h), that are dependent on the f electron
configuration w.

(Eq—u)N;+U ¢ Y onoy

E:Ze_ﬁ[ '

where = e r:kBT/t, p is the chemical potential and

I(1+e77“ (5)

summation runs over all possible f electron configurations.
Thermodynamic quantities as functions of temperature,
have been expressed directly from the partition function by
employing the standard statistical relations. For example
the average number of all electrons in the system

1 . .
(n:E<Nf+Nd>), the internal energy and the specific

heat can be expressed as:

o, . 1o_ _0Os
n=t aulna,s—— L aBHﬂm,cv— o (6)

The first step in numerical calculations of the
thermodynamic properties was to determine conditions
under which the symmetric case condition (u=U and
Uﬁ:—ZEf) is satisfied for all temperatures. It is possible to

show analytically that the chemical potential is constant
when n=2 (analogically when we determine p=U then
<N>=2L).

Though this condition (fixed p and N) significantly
speeded up the numerical computations of thermodynamic
properties, we were able to perform the exact numerical
study (over all possible f-electron configurations) only on
small lattices (up to L=12). To overcome this limitation we
have used the Monte-Carlo method. As the f-electron
occupation number can be replaced by the classical
variable W, we do not have to use the quantum Monte-
Carlo algorithm and thus our calculations are not restricted
to the high-temperature regime. The classical Monte-
Carlo, where we used the free energy

1 (o)
F)=ENgUg Z wigwyy - Sin(ise PE ),
[ i,o

(M

as the statistical weight in the Metropolis algorithm,
allowed us to study the thermodynamic properties of the
model on approximatively ten times larger lattices.
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Fig. 2. Specific heat as a function of temperature
r:kBT/t for U=2,Uﬁ=1,J=1 in two dimensions.

The simple line represents the exact results for L=10,
different symbols represent Monte-Carlo results for
different lattices. Lines are only guides for eye. The left
inset represents the temperature dependence of VAR’

The right inset represents a dependence of In(c\r/n aX/kB)

onlin \/_L with a linear fit of a slope ~0.466.
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Fig. 3. Specific heat as a function of temperature r:kBT/t
for U=2,Uﬁ=4,J=2 The

simple line represents the exact results for L=10,
different symbols represent Monte-Carlo results for
different lattices. Lines are only guides for eye. The left
inset represents the temperature dependence of VAR

in two dimensions.

The right inset represents a dependence of In(c:\r/n aX/kB)

on In~/L with a linear fit of a slope ~0.453.

The typical examples of the Cv(r) dependence in two
dimensions for U=2 and two different sets of Uﬁ and J

values in that represent two different ground states (the
CDW and SDW phase) are shown in Fig.2 and Fig.3. One
can see that C, as a function of t shows the two-peak

structure. There is a sharp low-temperature peak and a
broad high temperature peak. The high-temperature peak
is clearly of Schottky type, but the nature of the low
temperature peak is not so evident. In the left insets of
Fig.2 and Fig.3 we present the t-dependence of parameters

(CWD) and

!
Va-g~ 2 <VaovBl>

1
Mp_g= 7 <IMp—Mg[> (SWD).
Parameters vy _pam, p change rapidly from I to 0, near

. max
the temperature where the maximum of Cy (CV L)
appears. This suggests that the maximum of oy is related to

breaking of the charge and spin ordering. The kind of
phase transition can be estimated from the finite size

max
scaling of c, - In the right insets of Fig.2 and Fig.3 we
max .
present the dependences In(cV /kB) on In(4/L) with

plotted linear fits. The In(c\r? aX/kB) dependence for the

CDW ground state (Fig.2) is in very good agreement with
the linear fit with a slope ~0.466, and the same
dependence for SDW ground state phase (Fig.3) is in very

good agreement with the linear fit with a slope ~0.453.
This indicates an Ising-like phase transition for both cases
what means that the CDW phase as well as the SDW
phase persist up to finite temperatures.

The corresponding critical temperatures for both above
mentioned phase transitions are displayed in Fig.4.
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Fig. 4. Dependence of the critical temperature for the
Ising-like phase transition on spin-dependent interaction
J for U=2 and Uﬁ=1,4

These critical temperatures have been extrapolated
. max
from the location of the Cy
Binder cumulant method [13], each other with good
agreement. As Binder cumulant we have chosen

and by using the standard

4 4
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In the CDW area the maximum value of the critical
temperature is for J=0 and with increasing J the critical
temperature decreases. The reason for such behavior is
that the spin-dependent interaction J suppresses the
stability of CDW phase. More complicated is the behavior
of critical temperature in the SDW area, where for J=0 the

ground state is 2L degenerated, so no finite temperature
transition was observed for any Uﬁ. The critical

temperature increases rapidly with increasing J and
reaches its maximum at J~U then gradually decreases.
Quantitatively the J-dependence of the critical temperature
in the SDW phase resembles the U-dependence of the
critical temperature of the conventional spinless FKM in te

CDW phase, but T values in the SDW phase are

approximatively two times larger than ones of the spinless
FKM [14].

4. Conclusion
In summary, the extrapolation of small-cluster exact-

diagonalization calculations and the Monte-Carlo method
were used to study the spin-one-half Falicov-Kimball
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model extended by the spin-dependent Coulomb
interaction between the localized f and itinerant d electrons
as well as the on-site Coulomb interaction between the
localized f electrons. It was shown that in the symmetric
case, when the chemical potential p equals to U the
ground-state phase diagram of the model has an extremely
simple structure that consists of only two phases, and
namely, the charge-density-wave phase (with local f-
electron pairs on one of two sublattices of a bipartite
lattice) and the spin-density-wave phase. One of the most
important results is that the charge-density-wave phase can
be the ground state of the model (1) even for Uff>U that

represents the realistic situation of strongly correlated
electrons system described by model Hamiltonian (1).

The nonzero temperature studies of the specific heat
showed that both these phases persist also at finite
temperatures. The critical temperature for a transition from
the low-temperature ordered phases to the high-
temperature disordered phase was extrapolated from
numerical calculations for various values of J and Uff. It

was found that in CDW area the maximum value of
critical temperature is for J=0 and in the area SDW for
J~U.
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