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The extrapolation of small-cluster exact-diagonalization calculations and the Monte-Carlo method is used to study the spin-
one-half Falicov-Kimball model extended by the spin-dependent Coulomb interaction (J) between the localized f and 
itinerant d electrons as well as the on-site Coulomb interaction (Uff ) between the localized f electrons. It is shown that in the 
symmetric case, when the chemical potential μ equals to U (where U is the spin-independent on-site Coulomb interaction 
between the f and d electrons) the ground-state phase diagram of the model has an extremely simple structure that consists 
of only two phases, and namely, the charge-density-wave phase (with local f-electron pairs on one of two sublattices of a 
bipartite lattice) and the spin-densitywave phase. The nonzero temperature studies of the speci_c heat showed that these 
phases persist also at _nite temperatures. The critical temperature Tc for a transition from the low-temperature ordered 
phases to the high-temperature disordered one is calculated numerically for various values of J and Uff . 
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1.  Introduction 
 
Since its introduction in 1969 [1], the Falicov-Kimball 

model (FKM) has become an important model for a 
description of correlated fermions on lattices. The model 
was originally proposed to describe the metal-insulator 
transitions in the rare-earth and transition-metal 
compounds. Later it has been used in literature to study a 
great variety of many-body effects such as alloy 
formation, mixed valence and electronic ferroelectricity 
[2]. Recent theoretical studies of the FKM showed [3] that 
the model can yield the correct physics for description of 
the ground-states of rare-earth and transition metal-
compounds, what has motivated also the study of 
thermodynamic properties of this model [4]. 

In its original version the FKM consists of particles 
localized on f orbitals which interact with a dispersive 
band of d orbitals through an on-site Coulomb interaction 
but various generalized versions of the FKM are being 
studied too. It was shown that including of different 
interaction terms to the FKM can lead to dramatic changes 
of the ground state and thermodynamic properties of the 
model [4-8]. Generalized versions of the FKM can 
describe a wide range of physical properties of the 
strongly correlated systems, that were not possible to 
explain by the original FKM.  

In this paper we focus our attention on the spin one-
half models with spin-dependent local interaction between 
localized f electrons and itinerant d electrons and models 
with local repulsive Coulomb interaction of finite 
magnitude between f electrons. Till now only a few 
analytical and numerical results have been obtained 
concerning the influence of these terms on ground-state as 
well as thermodynamic properties of the FKM [6-8].  

For example the models with spin-dependent local 
interaction can describe the ferromagnetic ground state 
and various stable inhomogeneous charge and spin 
orderings observed in real materials [6,7]. It was shown 
analytically that in models with finite inter-orbital 
Coulomb interaction can arise an effective on-site 
attraction between the localized particles that can 
overcome a direct repulsion in the strong coupling limit 
[8]. This attraction leads to a chessboard-like pattern of 
localized f-pairs that can persist up to finite temperatures 
[8]. 

The essential influence of mentioned interactions on 
properties of the FKM and their ability to describe new 
famous phases was the main motivation for us to study the 
ground state and thermodynamic properties of generalized 
model that include both the spin dependent interaction and 
finite local repulsion of localized particles. 
The Hamiltonian of the model is  
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iσdiσ) is the f-electron (d-

electron) occupation number and f
+
iσ,fiσ are the creation 

and annihilation operators for an electron of spin σ=↑,↓ in 

the local state at lattice site i and d
+
iσ,diσ are the creation 
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and annihilation operators of the itinerant electrons in the 
d-band Wannier state at site i. 

The first term of the model (1) is the kinetic energy 
corresponding to the quantum-mechanical hopping of the 
itinerant d electrons between sites i and j. These inter-site 
hopping transitions are described by the matrix elements 
tij, which are −t if i and j are the nearest neighbors and 

zero otherwise (In the next all energies are measured in 
units of t). The second term represents the on-site 
Coulomb interaction between the d-band electrons and 
localized f electrons. The third term stands for the 
localized f electrons whose sharp energy level is Ef. The 

fourth term is the above mentioned anisotropic, spin-
depended local interaction of the Ising type between the 
localized and itinerant electrons that reflects the Hund’s 
rule force. The last term is an on-site Coulomb interaction 
between f-electrons with opposite spins. Thus from the 
major interaction terms [] that come into account for the 
interacting d and f electron subsystems only the Hubbard 
type interaction has been omitted. However, as we have 
shown in our previous paper the influence of this term can 
be neglected at least for intermediate and strong 
interactions U [7]. 

Since in this generalized version of the FKM the f-

electron occupation number n
f
iσ of each site i commutes 

with the Hamiltonian (1), it is a good quantum number, 
taking only two values: wiσ=1 or 0, according to whether 

or not the site i is occupied by the localized f electron with 
spin σ. Thus the Hamiltonian (1) can be rewritten as  
 

H= ∑
ijσ

 hijσd
+
iσdjσ+Uff ∑

i
 wi↑wi↓+Ef ∑

iσ
 wiσ     (2) 

 
where hijσ(w)=tij+(U(wi−σ+wiσ)+J(wi−σ−wiσ)δij). Thus 

for a given f-electron configuration w, the Hamiltonian (1) 
is the second-quantized version of the single-particle 
Hamiltonian h, so the investigation of the model (1) is 
reduced to the investigation of the spectrum of h for 
different configurations of f electrons.  
For further purposes it is suggestive to look at used lattices 
as consisting of two interpenetrating sublattices A and B 
and to define the sublattice magnetization  
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(where L is the number of lattice sites) and the sublattice f-
electron occupancy  
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In the next study we concern our attention on the 

symmetric case of the model, where H−μN (N- is the total 
number of f and d electrons) remains unchanged under 

particle-hole transformation. This condition holds for all J 
if μ=U and Uff=−2Ef.  

 
2. Ground state properties 
 
As will be discussed latter the condition μ=U is 

satisfied for all temperatures just when the average number 
of all electrons in the system is equal to 2L. For this reason 
we have restricted our study of the ground state properties 
of the model (1) on the case N=2L. The ground state was 
studied in one and two dimensions in the weak, 
intermediate and strong-coupling limit of Coulomb 
interaction U (U=0.5,1,2,4,8) and for wide range of J and 

Uff values (0≤J≤2U,0≤Uff≤4U,Ef=− 
1
2Uff). 

The total number of possible f-electron configurations 

for the model (1) is 4L, thus only the clusters with L≤12 
have been accessible for the exact diagonalization studies. 
For L>12 we have used a well-controlled numerical 
method elaborated recently by one of the present authors 
[10]. 

Using these two methods we have found that for 
scheduled conditions and above mentioned values of 
parameters only two kinds of f-electron configurations can 
be the ground state of the model (1). The first is the 
charge-density-wave (CDW) phase, where one of the 
sublattices is fully occupied by f electrons (two f electrons 
per site) and the other is empty.  
  

  
 

Fig. 1.  Phase diagrams of the model (1) in the J/U-Uff/U 

plane for different values of U in one (1D) and two (2D) 
dimensions. Different line types represents the boundary 
between the CDW and SDW phases for different cluster  
                                       sizes. 
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The second is the spin-density-wave (SDW) phase, 
where all sites are occupied by one electron and for J>0 
one of the sublattices is occupied by electrons with spin up 
and another by electrons with spin down. This means that 
for the CDW phase we have mA=mB=0, 

2,0 )(,)(, == ABBA nn  and for the SDW phase 

1,1 )(,)(, =−= ABBA mm , νA=νB=1. The CDW phase 
which is the ground state bellow the critical values of Uff 

and J is an example of local f-electron pairing that results 
from an effective on-site attraction between the localized 
electrons, produced by quantum mechanical effects which 
can overcome a direct Coulomb repulsion.  

The fact that the ground-state of the model consists of 
only two phases was used to construct a phase diagrams in 
the J−Uff plane for various U and lattices of several 

hundreds sites. These phase diagrams are shown in Fig.1, 
where the 1D represents the one dimensional case and 2D 
the two dimensional case. One can see that increasing U 
shifts the region of stability of the CDW phase to higher 
values of Uff/U. Contrary to U the parameter J suppresses 

the CDW phase. The most interesting result is that the 
CDW phase can be the ground state of the model (1) even 
for Uff>U that represents the realistic situation of strongly 

correlated electrons systems described by model 
Hamiltonian (1).  

The possibility of metal-insulator transition was 
studied too. The energy gap on the Fermi level is for the 
CDW phase equal to 2U and for the SDW phase 2J. So 
there is a discontinuous metal-insulator transition (on Uff) 

for J=0 and a discontinuous insulator-insulator transition 
for J>0.  

 
 
3. Thermodynamics 
 
The question if or not the CDW and SDW phases 

persist up to finite temperatures motivated our study of 
thermodynamic properties of the model (1). The grand 
canonical partition function of Hamiltonian (1) can be 

written directly as a function of eigenvalues εσi  (of the 

operator h), that are dependent on the f electron 
configuration w.  
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where β= 
1
τ, τ=kBT/t, μ is the chemical potential and 

summation runs over all possible f electron configurations. 
Thermodynamic quantities as functions of temperature, 
have been expressed directly from the partition function by 
employing the standard statistical relations. For example 
the average number of all electrons in the system 

(n= 
1
L < >Nf+Nd ), the internal energy and the specific 

heat can be expressed as:  
 

 n=τ 
∂
∂μlnΞ,ε=− 

1
L 
∂
∂βΞ+μn,cv= 

∂ε
∂τ. (6) 

 
The first step in numerical calculations of the 

thermodynamic properties was to determine conditions 
under which the symmetric case condition (μ=U and 
Uff=−2Ef) is satisfied for all temperatures. It is possible to 

show analytically that the chemical potential is constant 
when n=2 (analogically when we determine μ=U then 
< >N =2L).  

Though this condition (fixed μ and N) significantly 
speeded up the numerical computations of thermodynamic 
properties, we were able to perform the exact numerical 
study (over all possible f-electron configurations) only on 
small lattices (up to L=12). To overcome this limitation we 
have used the Monte-Carlo method. As the f-electron 
occupation number can be replaced by the classical 
variable w, we do not have to use the quantum Monte-
Carlo algorithm and thus our calculations are not restricted 
to the high-temperature regime. The classical Monte-
Carlo, where we used the free energy  
 

 F(w)=(Ef−μ)Nf+Uff ∑
i

 wi↑wi↓− 
1
β ∑

i,σ
 ln(1+e−β(εσi −μ)),

(7) 
 

as the statistical weight in the Metropolis algorithm, 
allowed us to study the thermodynamic properties of the 
model on approximatively ten times larger lattices.  
  

  
Fig. 2.  Specific heat as a function of temperature 
τ=kBT/t for U=2,Uff=1,J=1  in two dimensions. 

The simple line represents the exact results for L=10, 
different symbols represent Monte-Carlo results for 
different lattices. Lines are only guides for eye. The left 
inset represents the temperature dependence of νA−B, 

The right inset represents a  dependence  of  ln(c
max
v /kB)  

        on ln L with a linear fit of a slope ∼0.466. 
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Fig. 3. Specific heat as a function of temperature τ=kBT/t 

for U=2,Uff=4,J=2  in two dimensions. The 

simple line represents the exact results for L=10, 
different symbols represent Monte-Carlo results for 
different lattices. Lines are only guides for eye. The left 
inset represents the temperature dependence of νA−B, 

The right inset  represents  a  dependence of ln(c
max
v /kB)  

        on ln L with a linear fit of a slope ∼0.453. 
 
 
 

The typical examples of the cv(τ) dependence in two 

dimensions for U=2 and two different sets of Uff and J 

values in that represent two different ground states (the 
CDW and SDW phase) are shown in Fig.2 and Fig.3. One 
can see that cv as a function of τ shows the two-peak 

structure. There is a sharp low-temperature peak and a 
broad high temperature peak. The high-temperature peak 
is clearly of Schottky type, but the nature of the low 
temperature peak is not so evident. In the left insets of 
Fig.2 and Fig.3 we present the τ-dependence of parameters 

νA−B= 
1
2 < >|νA−νB|  (CWD) and 

mA−B= 
1
2 < >|mA−mB|  (SWD). 

Parameters νA−B a mA−B change rapidly from 1 to 0, near 

the temperature where the maximum of cv (c
max
v (L)) 

appears. This suggests that the maximum of cv is related to 

breaking of the charge and spin ordering. The kind of 
phase transition can be estimated from the finite size 

scaling of c
max
v . In the right insets of Fig.2 and Fig.3 we 

present the dependences ln(c
max
v /kB) on ln( L) with 

plotted linear fits. The ln(c
max
v /kB) dependence for the 

CDW ground state (Fig.2) is in very good agreement with 
the linear fit with a slope ∼0.466, and the same 
dependence for SDW ground state phase (Fig.3) is in very 

good agreement with the linear fit with a slope ∼0.453. 
This indicates an Ising-like phase transition for both cases 
what means that the CDW phase as well as the SDW 
phase persist up to finite temperatures. 
The corresponding critical temperatures for both above 
mentioned phase transitions are displayed in Fig.4.  
  
 

  
 
 

Fig. 4. Dependence of the critical temperature for the 
Ising-like phase transition on spin-dependent interaction  
                         J for U=2 and Uff=1,4 . 

 
 
 
These critical temperatures have been extrapolated 

from the location of the c
max
v  and by using the standard 

Binder cumulant method [13], each other with good 
agreement. As Binder cumulant we have chosen  
 

BCDW=1− 
 < >ν

4
A−B

3 < >ν
2
A−B

2,BSDW=1− 
 < >m

4
A−B

3 < >m
2
A−B

2. 

(8) 
 

In the CDW area the maximum value of the critical 
temperature is for J=0 and with increasing J the critical 
temperature decreases. The reason for such behavior is 
that the spin-dependent interaction J suppresses the 
stability of CDW phase. More complicated is the behavior 
of critical temperature in the SDW area, where for J=0 the 

ground state is 2L degenerated, so no finite temperature 
transition was observed for any Uff. The critical 

temperature increases rapidly with increasing J and 
reaches its maximum at J∼U then gradually decreases. 
Quantitatively the J-dependence of the critical temperature 
in the SDW phase resembles the U-dependence of the 
critical temperature of the conventional spinless FKM in te 
CDW phase, but τc values in the SDW phase are 

approximatively two times larger than ones of the spinless 
FKM [14]. 

 
 
4.  Conclusion 
 
In summary, the extrapolation of small-cluster exact-

diagonalization calculations and the Monte-Carlo method 
were used to study the spin-one-half Falicov-Kimball 
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model extended by the spin-dependent Coulomb 
interaction between the localized f and itinerant d electrons 
as well as the on-site Coulomb interaction between the 
localized f electrons. It was shown that in the symmetric 
case, when the chemical potential μ equals to U the 
ground-state phase diagram of the model has an extremely 
simple structure that consists of only two phases, and 
namely, the charge-density-wave phase (with local f-
electron pairs on one of two sublattices of a bipartite 
lattice) and the spin-density-wave phase. One of the most 
important results is that the charge-density-wave phase can 
be the ground state of the model (1) even for Uff>U that 

represents the realistic situation of strongly correlated 
electrons system described by model Hamiltonian (1). 

The nonzero temperature studies of the specific heat 
showed that both these phases persist also at finite 
temperatures. The critical temperature for a transition from 
the low-temperature ordered phases to the high-
temperature disordered phase was extrapolated from 
numerical calculations for various values of J and Uff. It 

was found that in CDW area the maximum value of 
critical temperature is for J=0 and in the area SDW for 
J∼U. 
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